LET-99 opposes Galpha/GPR signaling to generate asymmetry for spindle positioning in response to PAR and MES-1/SRC-1 signaling.

نویسندگان

  • Meng-Fu Bryan Tsou
  • Adam Hayashi
  • Lesilee S Rose
چکیده

G-protein signaling plays important roles in asymmetric cell division. In C. elegans embryos, homologs of receptor-independent G protein activators, GPR-1 and GPR-2 (GPR-1/2), function together with Galpha (GOA-1 and GPA-16) to generate asymmetric spindle pole elongation during divisions in the P lineage. Although Galpha is uniformly localized at the cell cortex, the cortical localization of GPR-1/2 is asymmetric in dividing P cells. In this report, we show that the asymmetry of GPR-1/2 localization depends on PAR-3 and its downstream intermediate LET-99. Furthermore, in addition to its involvement in spindle elongation, Galpha is required for the intrinsically programmed nuclear rotation event that orients the spindle in the one-cell. LET-99 functions antagonistically to the Galpha/GPR-1/2 signaling pathway, providing an explanation for how Galpha-dependent force is regulated asymmetrically by PAR polarity cues during both nuclear rotation and anaphase spindle elongation. In addition, Galpha and LET-99 are required for spindle orientation during the extrinsically polarized division of EMS cells. In this cell, both GPR-1/2 and LET-99 are asymmetrically localized in response to the MES-1/SRC-1 signaling pathway. Their localization patterns at the EMS/P2 cell boundary are complementary, suggesting that LET-99 and Galpha/GPR-1/2 signaling function in opposite ways during this cell division as well. These results provide insight into how polarity cues are transmitted into specific spindle positions in both extrinsic and intrinsic pathways of asymmetric cell division.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

LET-99 inhibits lateral posterior pulling forces during asymmetric spindle elongation in C. elegans embryos

Cortical pulling on astral microtubules positions the mitotic spindle in response to PAR polarity cues and G protein signaling in many systems. In Caenorhabditis elegans single-cell embryos, posterior spindle displacement depends on Galpha and its regulators GPR-1/2 and LIN-5. GPR-1/2 and LIN-5 are necessary for cortical pulling forces and become enriched at the posterior cortex, which suggests...

متن کامل

A Casein Kinase 1 and PAR Proteins Regulate Asymmetry of a PIP2 Synthesis Enzyme for Asymmetric Spindle Positioning

Spindle positioning is an essential feature of asymmetric cell division. The conserved PAR proteins together with heterotrimeric G proteins control spindle positioning in animal cells, but how these are linked is not known. In C. elegans, PAR protein activity leads to asymmetric spindle placement through cortical asymmetry of Galpha regulators GPR-1/2. Here, we establish that the casein kinase ...

متن کامل

PAR-3 and PAR-1 Inhibit LET-99 Localization to Generate a Cortical Band Important for Spindle Positioning in Caenorhabditis elegans Embryos□D □V

The conserved PAR proteins are localized in asymmetric cortical domains and are required for the polarized localization of cell fate determinants in many organisms. In Caenorhabditis elegans embryos, LET-99 and G protein signaling act downstream of the PARs to regulate spindle positioning and ensure asymmetric division. PAR-3 and PAR-2 localize LET-99 to a posterior cortical band through an unk...

متن کامل

Asymmetrically Distributed C. elegans Homologs of AGS3/PINS Control Spindle Position in the Early Embryo

BACKGROUND Spindle positioning during an asymmetric cell division is of fundamental importance to ensure correct size of daughter cells and segregation of determinants. In the C. elegans embryo, the first spindle is asymmetrically positioned, and this asymmetry is controlled redundantly by two heterotrimeric Galpha subunits, GOA-1 and GPA-16. The Galpha subunits act downstream of the PAR polari...

متن کامل

PAR-3 and PAR-1 inhibit LET-99 localization to generate a cortical band important for spindle positioning in Caenorhabditis elegans embryos.

The conserved PAR proteins are localized in asymmetric cortical domains and are required for the polarized localization of cell fate determinants in many organisms. In Caenorhabditis elegans embryos, LET-99 and G protein signaling act downstream of the PARs to regulate spindle positioning and ensure asymmetric division. PAR-3 and PAR-2 localize LET-99 to a posterior cortical band through an unk...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 130 23  شماره 

صفحات  -

تاریخ انتشار 2003